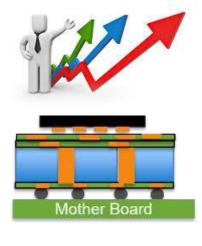


Development and Exploitation of Processes For Thin Flexible Glass

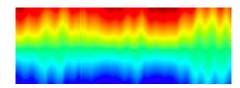
Wednesday 14th May 2014

Plating on Glass

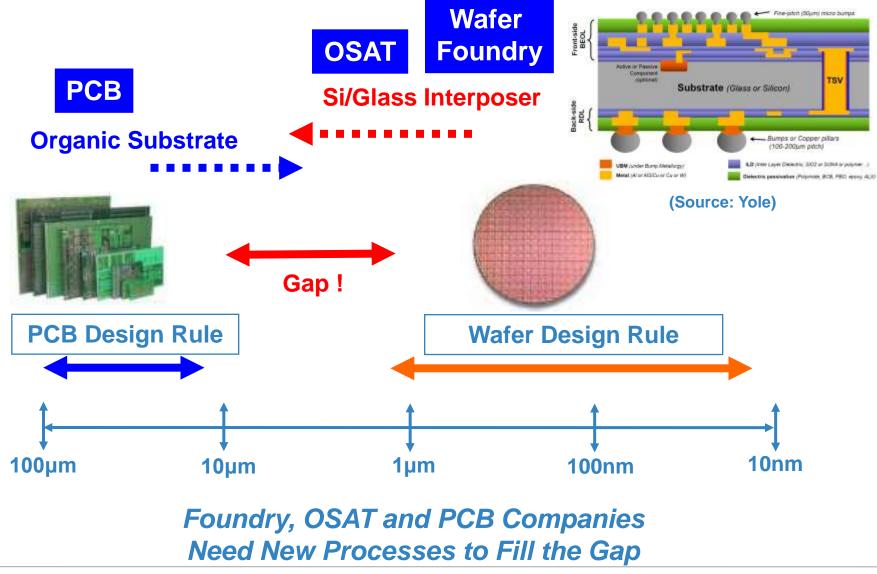

Plating on Glass

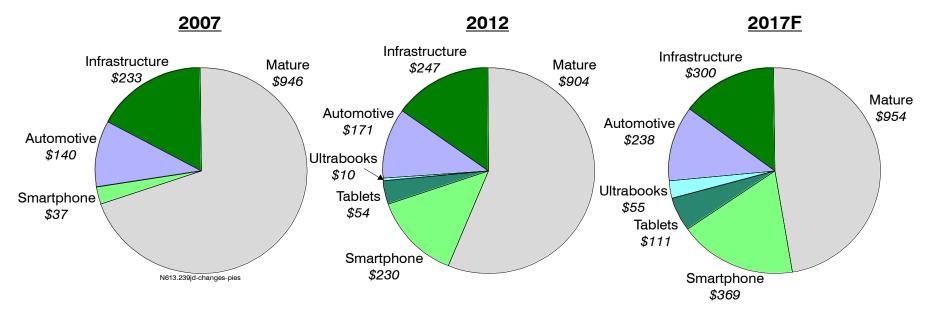
Overview and Process Technologies

Electronics


Plating on Glass Scope

- Market Trends / Motivation
- Applications
- Manufacturing Methods
- Through Hole Filling
- Electrical Characterization
- Summary




Plating on Glass Market Trends - Electronics Evolution

Proprietary and Confidential

Plating on Glass Market Trends CHANGES IN THE ELECTRONICS INDUSTRY STRUCTURE

Total: \$1,356Bn

Total: \$1,616Bn

Total: \$2,027Bn

	CAAGR 2007-2012	CAAGR 2012-2017	CAAGR 2007-2017
Mature	-0.9%	1.1%	0.1%
Growth	11.8%	8.5%	10.1%
Total	3.6%	4.6%	4.1%

Major Growth Areas in Mobile Formats – Smartphone – Tablets

Proprietary and Confidential

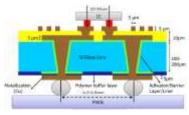
Plating on Glass Market Trends

- Major growth is all in mobile sector
- Smartphone growth:
 - 2012 2013 -15.7% - CAGR 2012 - 2017 - **9.9%**
- Tablet growth:
 2012 2013 46.3%
 - CAGR 2012 2107 **15.6%**
- Ultrabook growth:
 2012 2013 80.1%
 CAGR 2012 2017 40.6%

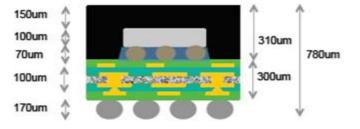
Apple iPhone 5S

Apple iPad Mini

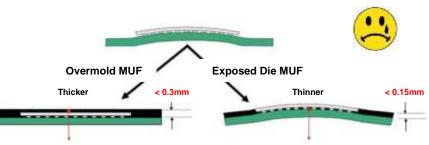
- Servers and Automotive will see steady growth
 - Cloud computing and automotive electronics
- Rest of Electronics Industry will stagnate
 Major Growth Areas in Mobile Formats Smartphone Tablets


Plating on Glass Motivation

- TFT Metallization for Flat Panel Displays
 - Sputtered seed layers (Mo, Ti/Cu)
 - Electroless Copper deposition (Up to 2 µm)
 - Electrolytic Copper plating (2 20 µm)
- Metallization for Touch Screens
 - Electroless Copper for improved conductivity
- Glass Metallization for Photovoltaic Applications
 - Electroless Copper on plain glass
 - Backplane electrode metallization
- Glass Metallization for Advanced Chip Packaging
 - Sputtered seed layers (Ti/Cu) or plain glass
 - Adhesion promoters for direct plating of electroless
 - Electroless and Electrolytic Copper for Glass interposer



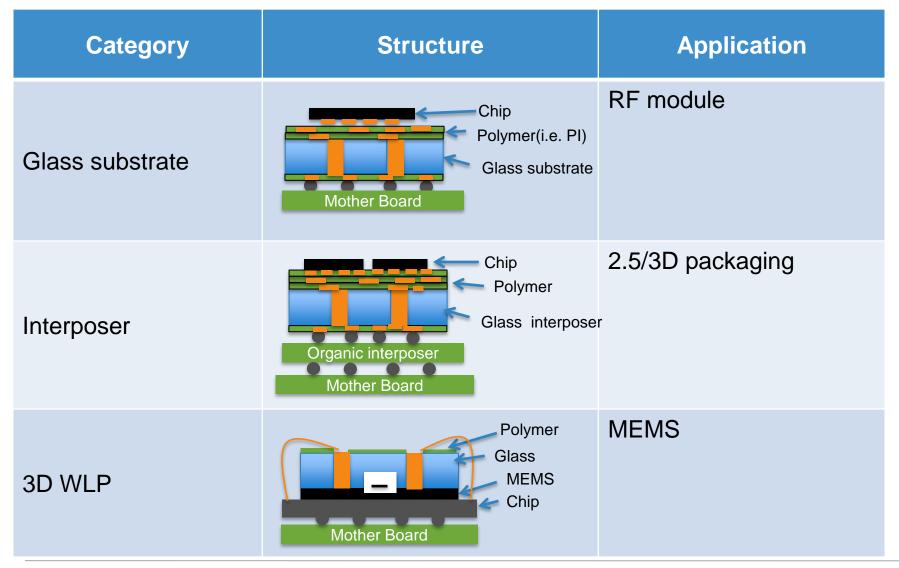
Source: PRC at Georgia Tech



Plating on Glass Motivation

- Mobile Device Packaging
 - Handset thickness approaching 6mm
 - Battery and screen size increasing
 - Chip packaging and the substrate board must shrink to accommodate this
- Warpage Reduction
 - Core thickness, CTE and modulus key
 - Core CTE already at 3ppm
 - Further reduction is no longer an option
 - Industry needs materials of higher modulus
- Pitch Requirement Reducing
 - Fine pitch requires copper pillar connections
 - Thermocompression bonding essential
 - Thinner Molding Compound increases warpage
 - Higher Mold shrinkage and modulus also required

Solder Balls Significant Proportion of Package Height


Low Cry Warpage Essential for Thinner Packages

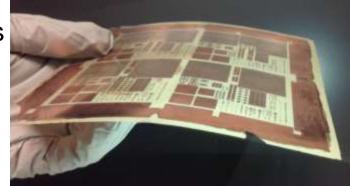
Source: Qualcomm

MUF – Molded Underfill

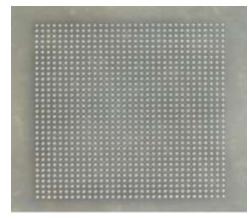
Plating on Glass Possible Applications

Proprietary and Confidential

Manufacturing Methods



Electronics


Plating on Glass Manufacturing Methodologies

- Sputtering of seed layer directly onto glass
 - Aspect ratio issues
 - Variable adhesion
- Nano Particle Inks
- Polymer Laminated Glass
 - Georgia Tech Consortia
- VitroCoat Adhesion Promoter
 - Metal Oxide based adhesion promoter
 - Suitable for glass and ceramics

(Source: Georgia Tech)

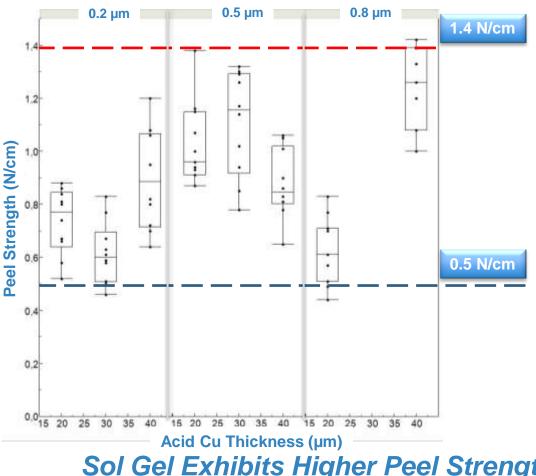
30µm Thick Polymer Laminated Glass

1089 Via Drilled Simultaneously

(Source: Asahi Glass Company)

Adhesion Improvement by Additive Roughening Processes

Sputtered Seed Layer



Electronics

Plating on Glass Sputtering - Peel Strength on Glass

Integration into Interposer Manufacturing Process – Benchmark Peel Strength

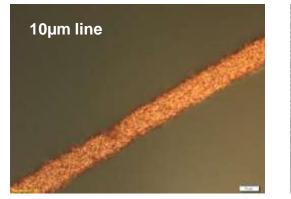
Sputtered Ti/Cu Seed Layer thickness

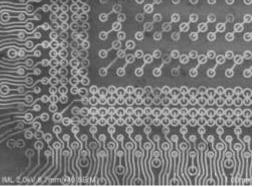
Limitations of Sputtered Seed Layers for Adhesion on Glass

- Low adhesion regardless of seed layer thickness (0.4 – 1.4 N/cm)
- Tendency to delaminate for thick copper layers
- Difficult to sputter in high aspect ratio through holes for glass substrates

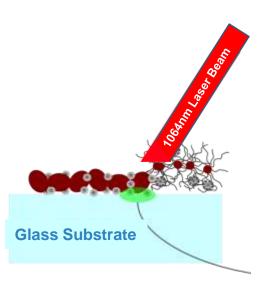
Sol Gel Exhibits Higher Peel Strength Than Sputtered Layers

14 2014.05.13_PoG_Overview MSolv_ART


Nano Particle Inks



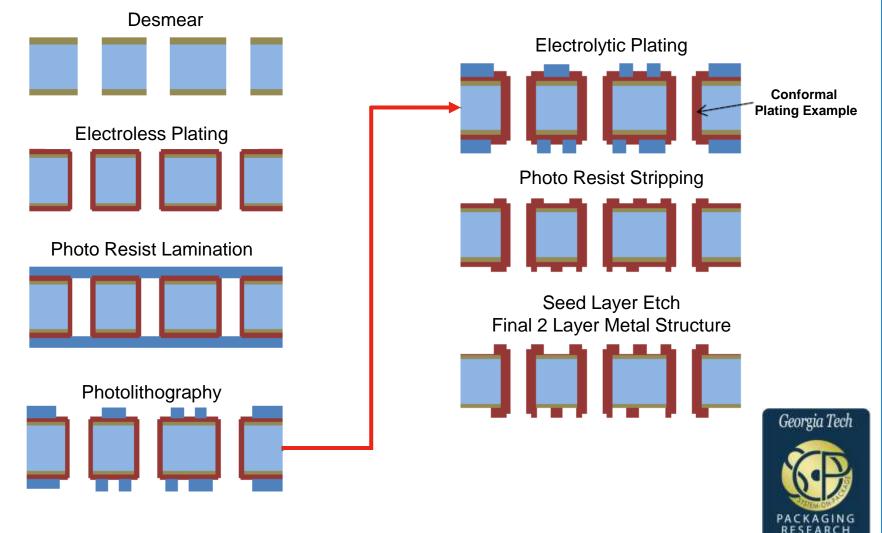
Electronics


Plating on Glass Adhesion Promoters for Glass

- Cleaning of the glass is crucial to obtain OH- rich surface
- Material is sprayed onto the glass
- Laser fixing creates covalent bonding with the glass
- Direct laser write or full glass coverage possible
- Wash off surplus if required
- Electroless copper is auto catalytically deposited Early Prototype Structures

Adhesion Sufficient to Cause Cohesive Failure Mechanism in the Glass!

Proprietary and Confidential



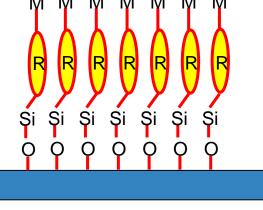
Polymer Laminated Glass

Electronics

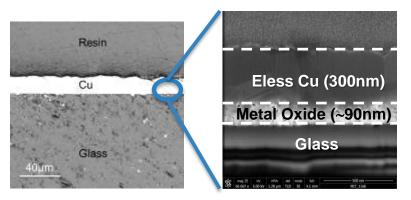
Plating on Glass Polymer Laminated Glass

Process Sequence for a Two Layer Metal Structure

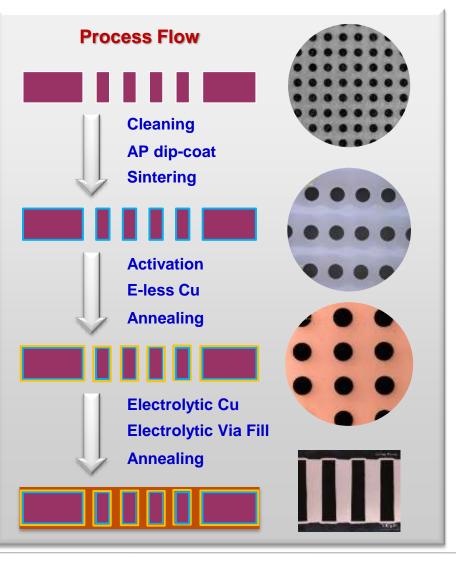
Metal Oxide Adhesion Promoter



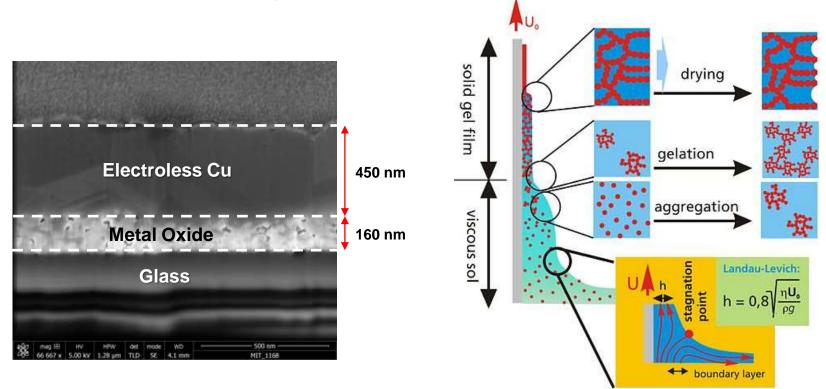
Electronics


Plating on Glass Introduction

- Targets
 - Replace sputtering by wet chemical process for Glass, Si/SiO2 and Ceramic plating
 - Target > 5N/cm adhesion
- Approaches
 - Sol-Gel coating with metal oxide intermediate layer
 - Covalent bonds with Self Assembled
 Monolayer (SAM)
 - PhD project at CWRU



Plating on Glass Process Flow for Plating on Glass with VitriCoat


- Glass Cleaning
- Apply Adhesion Promoter
 Metal Oxide Based
- Sintering
- Electroless Copper
- Electrolytic Cu Reinforcement
- X-Bridging
- Via Filling

Plating on Glass Adhesion Promoter Thickness Control

Metal Oxide Intermediate Layer - Sol Gel Process – FIB Cross Section

Principle of Sol Gel Process (Dip Coating)

- The thickness of the metal oxide layer is tunable
- Nano scale mechanical anchoring and chemical bonding *Adhesion Improvement by Additive Roughening Processes*

Proprietary and Confidential

Plating on Glass Adhesion Promoter Thickness Control

- The thickness of the metal oxide layer can be controlled by
 - Concentration of solution
 - Pull speed

250

200

150·

100-

50·

0+

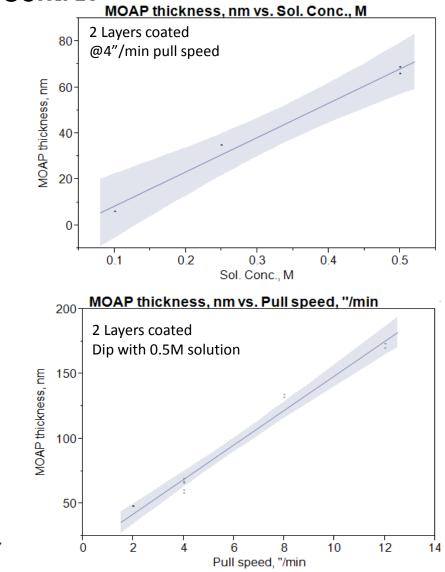
0

MOAP thickness, nm

- Number of coating layers

Dip with 0.5M solution

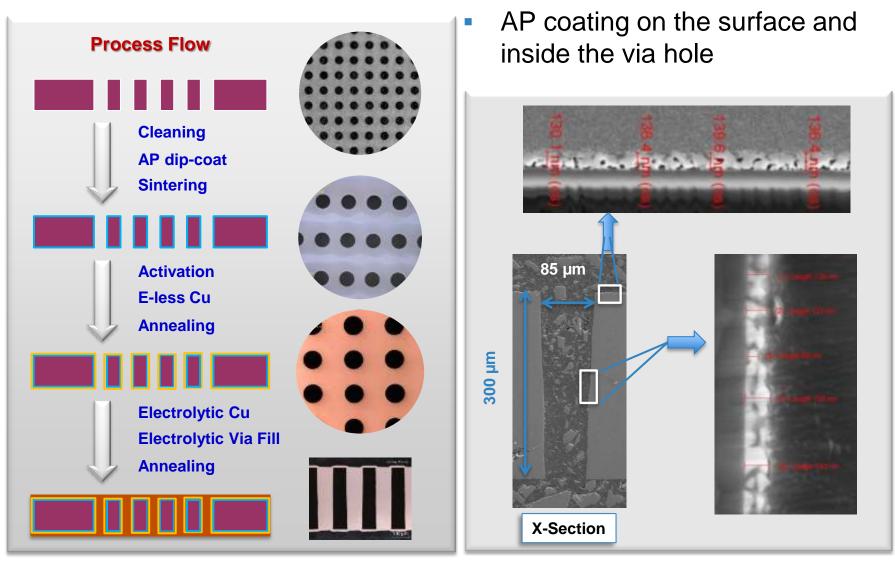
@4"/min pull speed


MOAP thickness, nm vs. Coating Layer

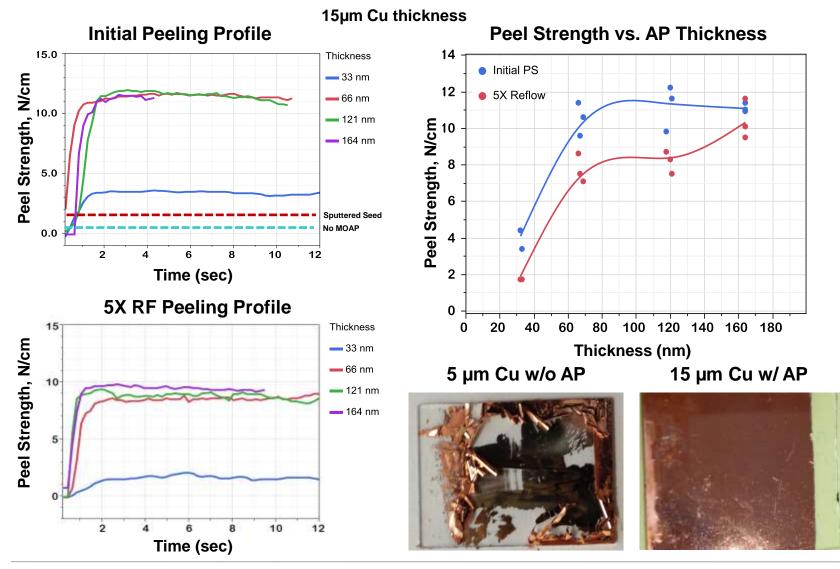
3

Coating Layer

5


6

2

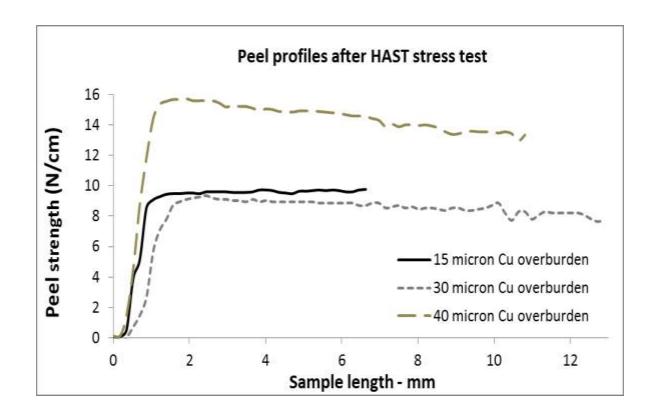


Proprietary and Confidential

Plating on Glass Peel Strength Versus Adhesion Promoter Thickness

Asahi Glass

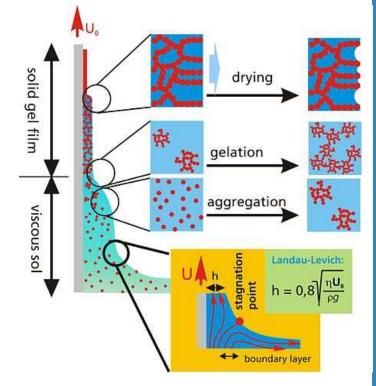
Plating on Glass Peel Strength Versus Adhesion Promoter Thickness


Corning Glass 15µm Cu thickness Peel Strength vs. MOAP Thickness **Peel Strength After Thermal Stress Test** 14-12-0 12-10-0 Peel Strength, N/cm 0 Peel Strength, N/cm 10-8 O 8 6 6-2 2 0 Initial 5x reflow HAST 0 150 50 100 **MOAP Thickness (nm) MOAP Thickness (nm)**

- Clear dependence of peel strength on AP thickness
- Peel strength of 5-6 N/cm achieved with ~ 10nm AP thickness
 Fine line patterning benefits
- No significant impact of thermal excursion on performance

Plating on Glass Peel Strength vs. Copper Thickness

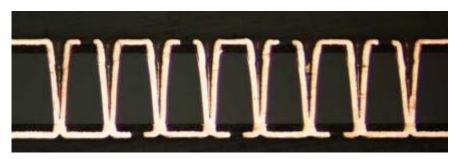
Corning Glass


- Peel strength increase as we normalise to ~35µm copper thickness
- No degradation of peel strength up to 40µm overburden
- No adhesion issues when CMP required

Plating on Glass Conclusions – Adhesion Promoter

- The use of VitroCoat provides excellent adhesion to ultra smooth glass
- Ultra thin AP (~10nm) also provide good adhesion (6N/cm)
- Independent of glass type and roughness
- Adhesion is sufficient to withstand
 - Stresses created by electroless copper
 - Stresses created by electrolytic copper
 - Thermal stresses, both reflow and HAST
 - CMP processing
- Without issues with through holes
 Tested down to 20µm diameter 10:1 AR
- Without issues with blind micro vias
 - Blind vias down to 35um diameter 2:1 AR

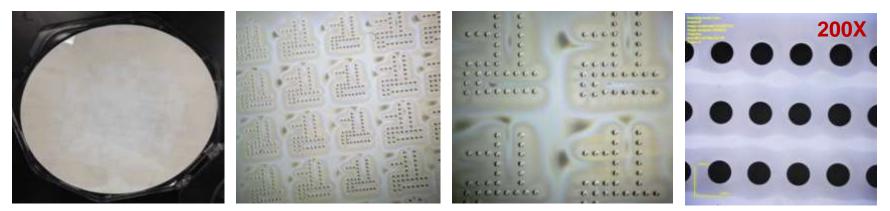
Proprietary and Confidential

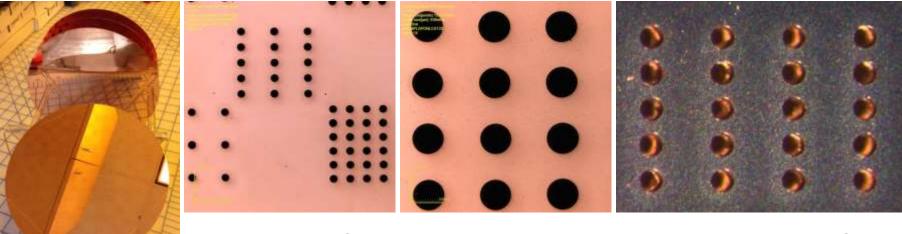


Principle of Sol Gel Process (Dip Coating)

Process is Plating Tool and Electrolyte Dependant

- Hole Shape
 - V shaped holes will always fill
 "bottom
 - up" like a blind micro via
 - Pulse parameters will have to be optimized for these hole shapes
 - Iron mediated electrolytes will offer best chance for success
- No Industry Capability Yet Established
 - Plating tools in IC Substrate manufacturing
 - Conformal plating, and through hole filling
 - Untested as yet on thin glass


Produced in Vertical Plating Systems at Georgia Tech


60-25 Hole Ø Top/Bottom - 100µm Glass 15µm ZIF Polymer - 22µm Cu Overburden

Atotech - Your Systems Technology Partner!

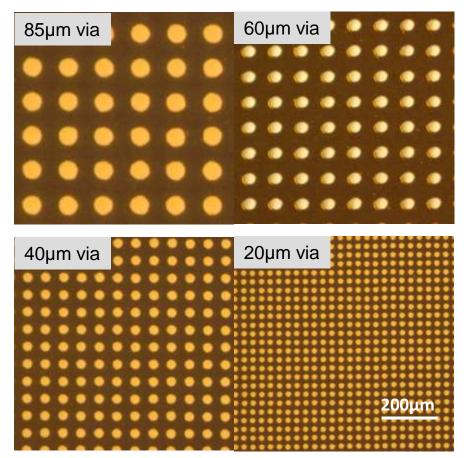
Glass Coated with Adhesion Promoter and Sintered

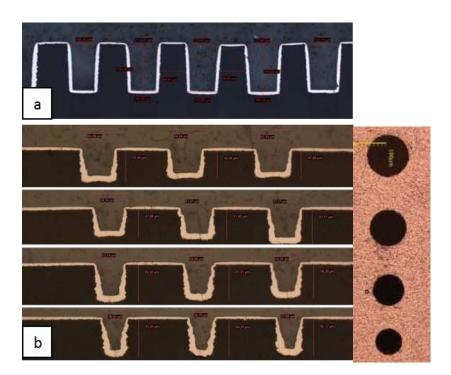
Electroless Copper and Annealing

Post Electrolytic Cu

No Through Hole Blockages – No Blistering or Adhesion Loss!

Proprietary and Confidential

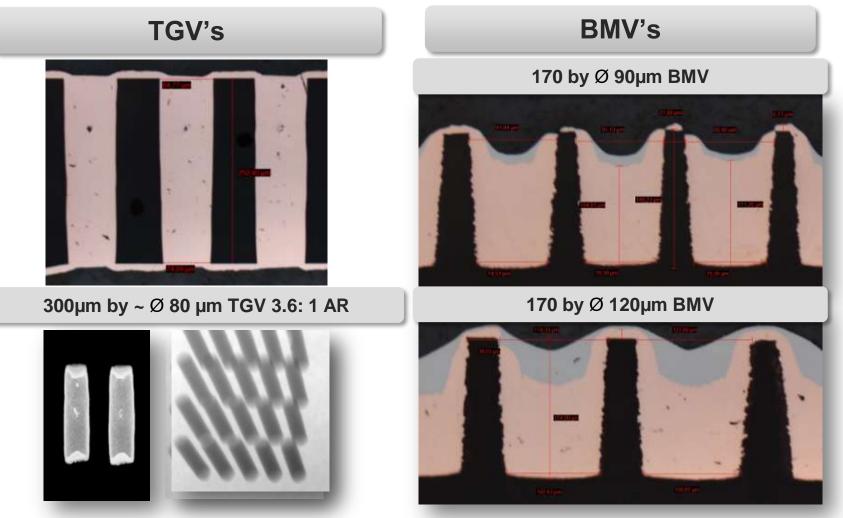

- Double sided plating using reverse pulse plating with insoluble anodes and an iron redox system
- Void free filling with low surface overburden required
- Challenges
 - Thin and fragile substrates
 - Non-Cylindrical tapered vias with aspect ratios > 3:1 AR


Through Glass Via (TGV's) Plating

Top view of TGVs (200 or 300µm Glass)

Blind Micro Via (BMV's) Plating

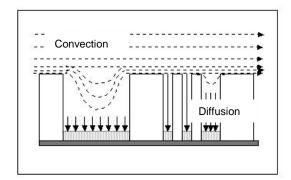
(a) Ø120µmx170µm, (b) Ø65 ~35µmx 60µm.

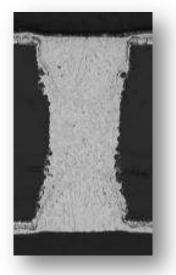


No Through Hole Blockages – No Blistering or Adhesion Loss!

32 2014.05.13 PoG Overview MSolv_ART

Plating on Glass Through Hole Filling and Blind Via Filling Status


Copper overburden ~ 10µm, some optimisation still required



Proprietary and Confidential

Plating on Glass Multiplate Through Hole Filling Scaling

Feasibility studies for Scaling of THF Approach

200 x 100 µm Panel Plating

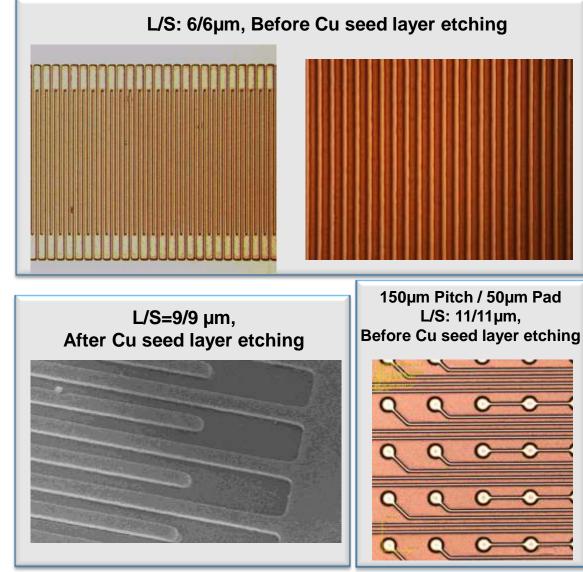
300 x 80 μm PoG (3.6 : 1 AR)

295 x 45 µm CNSE (6.5 : 1 AR)

New X-Bridging Approach

Electrical Characterisation Fine Line Patterning

Electronics


Plating on Glass Initial Fine Line Patterning Results SAP on Glass

Source: Georgia Tech

Process Flow

- Substrate cleaning
- VitroCoat AP coating
- Electroless Cu plating
- Annealing
- Novalink[®]
- Photolithography
- Electrolytic Cu plating
- Photoresist stripping
- Annealing
- CupraEtch[™] DE

Proprietary and Confidential

Plating on Glass Coplanar Waveguide (CPW) Design and Sample Fabrication

- CPW Design
 - Length
 - 16200, 112000, 6200μm
 - Gap
 - 26.5, 19.0µm
 - Signal Width
 - 170, 120µm
- Glass Type
 - Corning
 - Low CTE glass
- Georgia Tech
 - Fabricated, tested
 - Within consortium
 - Further tests ongoing
- IZM Cooperation

- Demonstrators
- Characterisation

	Designed		Fabricated		Measurement
Length / µm	Gap / µm	Width / µm	Gap / µm	Width / µm	weasurement
16200	26.50	170.00	28.80	167.20	Measurable
16200	19.00	120.00	20.28	117.35	Measurable
11200	26.50	170.00	28.00	168.23	Measurable
11200	19.00	120.00	18.65	120.45	Measurable
6200	26.50	170.00	24.88	169.05	Measurable
6200	19.00	120.00	17.85	118.48	Measurable

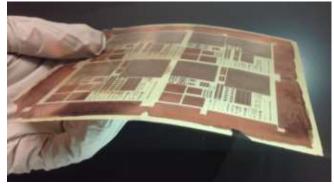
Plating on Glass

S-Parameters Simulation and Measurement Source: Georgia Tech Length:16200um Length:11200um Length:6200um 0.3 0.2 Width/ Gap:19/120 0.2 Measurement n n п -0.2 0 . s s 0.1 . -0.4 0 -0.2 -0.1 -0.6 -0.4 -0.2 Ó ö o -0.8 n n -0.3 -0.6 -1 -0.4 Simulation 0 ò -0.8 -0.5 -0.6 5 8 -1 -1.4 -0.7 (dB) (dB) (dB) -1.6 -0.8 -1.225 0 5 10 15 20 0 0 6 10 15 20 25 5 10 15 20 25 Frequency (GHz) Frequency (GHz) Frequency (GHz) at its Person it (Tuinte) officers in 0.2 Ο. 0.4 Width/ Gap:26.5/170 0.3 0 0 5 0.2 -0 e 0. -0.2 -0.2 D -0.3 -0.4 -0.1 0 Ó 0 -0.4 п -0.2 -0.6 -0. -0.3 -0.6 0 -0.8 0 -0.4 -0. -0.5 -1 -0.8 0.6 (dB)(dB) dB) -1.2 -0.9 -0.1 25 0 5 10 15 20 30 0 5 10 15 20 25 10 15 20 25 0 5 Frequency (GHz) Frequency (GHz) Frequency (GHz) infronts to

- Good correlation between simulation and measured results
- AP layer has no effect on electrical performance of transmission lines

Plating on Glass Summary

- Processes for Glass Interposer Manufacturing are Evolving
 - Adhesion promoter for bare glass developed
 - On bare glass electroless / electrolytic Cu adhesion is the major challenge


- Equipment for Glass Interposer Manufacturing

 Challenge is to handle wet chemical processing of thin glass materials
- Atotech production solutions, horizontal and vertical need to be qualified with thin glass
- Plating parameters / limits must be established

Atotech's Multiplate System

(Source: Georgia Tech)

³⁰µm Thick Polymer Laminated Glass

TCoO, manufacturability and assembly yield will drive market introduction

Supporting The Next Generation of Packaging Substrates

Proprietary and Confidential

(A) АТОТЕСН

Thank you for your attention!

Electronics